
                                                             

 

 
  

 

EENG 1920: Project II – Introduction to Electrical Engineering 

  

 

Team Members:  

 

 

University of North Texas 

Department of Electrical Engineering 





Table of Content  i 
 

 

Contents 
Abstract .............................................................................................................................................3 

Introduction ......................................................................................................................................3 

Report ...............................................................................................................................................4 

First Section: Reading the File ................................................................................................................... 4 

Second Section: Audio Equalizer Using .wav File ...................................................................................... 6 

Third Section: Audio Equalizer Using MyDaQ ......................................................................................... 10 

Fourth Section:  Adding Delays ............................................................................................................... 13 

Fifth Section:  Audio Equalizer with Mat Lab .......................................................................................... 15 

State Diagram .................................................................................................................................. 20 

Summary and Conclusions ................................................................................................................ 27 

Problems in the Implementation: ........................................................................................................... 27 

Team Work .............................................................................................................................................. 27 

References ....................................................................................................................................... 29 





Final Project- Audio Equalizer  3 
 

 

The Final Project gives us the opportunity to work on Mat Lab Graphical User Interface and Lab 

View to work on a brief report for it. The objective of the project was to make an audio equalizer 

and work on some modifications like adding LEDS and delay effect with it. The audio equalizer 

was a 3 band channel equalizer which has bass, mid and treble section only. 

 

Mat Lab by MathWorks is a high level computation and simulation language for technical 

computing. It integrates computation, visualization, and programming in an easy-to use 

environment. Mat Lab is used for math and computation, algorithm development, data 

acquisition, modeling, simulation, prototyping, data analysis, exploration and visualization, 

scientific and engineering graphics and finally for application. Lab VIEW is short for Laboratory 

Virtual Instrument Engineering Workbench which is a system-design platform and development 

environment for a visual programming language from National Instruments. 

Final project allowed us to work as a team working together for a single purpose. Applying all 

the information learned throughout the course either by programming on Mat Lab or working on 

the Lab View to make an audio equalizer. The problems faced during the making of audio 

equalizer was solved by divide and conquer method, which is based on trying different variables 

to solve a single problem. The report also discusses the barriers we faced, how we thought on the 

problem, the different ways we solved the problem and finally what we learned from every 

aspect. This project will help us implement it to real life scenarios where we need to think on 

time management, teamwork, different methods and results in order to achieve a single objective. 

 

 

 

 

 

 

 



4  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

The report is divided into 5 different sections; each section represents the work done through all 

the different functions, the different ways we approach to the problem and pros and cons on each 

choice we were making as we were working along the project. The first four sections are dealt 

with Lab view and last portion deals with Mat Lab. 

First Section: Reading the File 
In this section, we will focus on how to make the audio files work on Lab View. At first, we 

follow few steps which is shown below to get the required functions and controls for Lab View 

to read the file. The Block diagram is shown in Figure 1 and Front panel is shown in Figure 2. 

Functions 

Programming>>Graphics and sounds>>Sounds>>Output>>Play file 

Programming>>Graphics and sounds>>Sounds>>Output>>Info 

Programming>>Graphics and sounds>>Sounds>>Output>>Clear 

Programming>>Structures>>While Loop 

 

Controls 

Express>>LEDS>>Round LEDS 

 

 
Figure 1: Block Diagram (reading the file) 

 

 

 



Final Project- Audio Equalizer  5 
 

 

 
Figure 2: Front Panel (reading the file) 

 

Function: This work helps us to read only .wav files. In this block diagram the function “Play 

Sound File” will allow us to create path (directory) and device id. The play files task ID and 

error out will go through the while Loop and to “Sound Output Info.” The sound output info will 

detect whether the file is playing or not. If the file plays properly then the Boolean function LED 

in controls will glow as long as the audio keeps on playing. When the audio stops, the light of the 

LEDs turns off. At the right hand side of the block diagram, there is “Sound Output Clear.” It 

helps to clears the data. 

Lessons Learned: We learned how to play the .wav files and synchronize it with Boolean 

Function.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

Second Section: Audio Equalizer Using .wav File 
In this section, we will focus on how to make the audio files with equalizers to work on Lab 

View. At first, we follow few steps which is shown below to get the required functions and 

controls for Lab View. The Block diagram is shown in Figure 3 and Front panel is shown in 

Figure 4. 

Functions 

Programming>>Graphics and Sounds>>Sound>>Files>>Simple Read (Added Path and info) 

Programming>>Graphics and Sounds>>Sound>>Output>>Play Waveform 

Mathematics>>Numeric 

Express>>Signal Analysis>>Filter 

 

Controls 

Numeric Controls>>Knob 

 

 

Figure 3: Block Diagram (audio equalizer using the .wav file) 

 



Final Project- Audio Equalizer  7 
 

 

 

 
Figure 4: Front Panel (audio equalizer using the .wav file) 

 

Function: The function Sound File Read simply helps us to read the .wav files. So we created 

path and used the path to get the .wav audio file. The path was also used to acquire the info about 

the quality of sound using “Sound File Info”. The data acquired from the “Sound File Read 

Simple” function was passed to three filters. We used three filters since we are making three 

band equalizer. Our hearing range is usually in between 20 to 20,000 Hz. The chart of audio 

frequency spectrum is shown in Figure 5.  The frequency range approximately between 20Hz to 

250Hz are considered as “Bass/Low.” The frequency range approximately between 300Hz to 

2000Hz are considered as “Mid.” The frequency range above 3000Hz are considered as 

“Treble/High.”  

 
Figure 5: Audio Spectrum 



8  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

Therefore the settings for each filters were different from each other. The Filter used to capture 

only the bass spectrum of the audio was Low Pass Filter. Low Pass Filter only allows the audio 

which are in low spectrum. Our cut off frequency for low pass filter was 400Hz. Figure 6 shows 

the Low Pass Filter. The Filter used to capture the mid spectrum of the audio was Band Pass 

filter. It allowed us to capture the sounds from 450Hz to 2500Hz frequency spectrum. Figure 7 

shows the Band Pass Filter. The Filter used to capture the high end of the audio spectrum is High 

pass filter. It allowed us to capture the sounds from 5000Hz and above. Figure 8 shows the High 

Pass Filter. 

 
Figure 6: Low Pass Filter 

 
Figure 7: Band Pass Filter 

 
Figure 8: High Pass Filter 

 

 



Final Project- Audio Equalizer  9 
 

 

We separated the three sections of the sounds and then amplified using multipliers (numeric 

controls) then we add all the filtered signals together. This multipliers can be controlled using 

numeric controls. Therefore, we can hear the waveform of the whole audio with amplification 

using “Play Waveform.”  

Lessons Learned: In this VI file, we were able to use the .wav file to modify the bass, mid and 

treble. The problem faced for this VI file is we cannot change the settings of the bass, mid and 

treble when the song is playing. The settings for low, mid and high was changed before the VI 

file was played. We were not able to play any other files rather .wav files. Also, when we added 

the waveform graph in the while loop the graph was not changing with respect to sound. In order 

to make it happen, we used MyDAQ device to take audio inputs instantly from the cellphone and 

change the settings of bass, mid and treble whenever we wanted to. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

Third Section: Audio Equalizer Using MyDaQ 
In this section, we will focus on how to make equalizers using MyDAQ to work on Lab View. 

Lab View. The Block diagram is shown in Figure 9 and Front panel is shown in Figure 10 

 
Figure 9: Block Diagram (Audio Equalizer Using MyDaQ) 

 



Final Project- Audio Equalizer  11 
 

 

 
Figure 10: Front Panel (Audio Equalizer Using MyDaQ) 

 

Function: The whole process of making this equalizer was similar to Step 2 instead we used 

MyDaQ assist as input and output. We would use an extra device known as MyDaQ. MyDaQ is 

a device that transforms analog to digital. Figure 11 shows MyDaQ. As well as we used volume 

pointer to control the total volume of the sounds. We used comparators with Boolean functions 

so that LEDs turns on and off with respect to amplitude in certain range of frequencies. We used 

the Spectral measurements to change the time domain to frequency domain of the graph 

 
Figure 11: MyDaQ 

In other words, MyDaQ helps to acquire audio signals continuously. MyDaQ has audio input and 

audio output. Therefore, an auxiliary cable was used to connect from the cellphone to the audio 



12  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

in of the Mydaq. Headphones or small speakers was attached to the audio output of the MyDaQ 

to hear the modified audio signal. In this VI we were able to change the settings of the low, mid 

and high whenever we wanted to. We made slight modification by adding 3 dB octave equalizer 

with MyDaQ. The mod addition to the front panel is shown in Figure 12  and  mod addition in 

block diagram is shown in Figure 13. 

 

Figure 12: Front Panel with Modifications 

 

Figure 13: Block Diagram with Modifications 

These modification allowed us to see the changes amplitudes changes with respect to frequencies 

more clearly with better vision. 

 

 

 

 

 

 



Final Project- Audio Equalizer  13 
 

 

Fourth Section:  Adding Delays 
In this section, we would explain how we made delays and how it can be used with audio 

equalizer even though in this VI file we only can make delays from an audio input. The Front 

Panel is shown in Figure 14 and the block diagram is shown in Figure 15.  

 
Figure 14: Front Panel (Delay Effect) 

 

 

 

 



14  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

 

 

Figure 15: Block Diagram (Delay Effect) 

Function:  In this VI, we captured the audio data using a microphone for a certain period of time 

which is mentioned in the properties of “Acquire Sound.” Acquire sounds saves the data and 

then add echo effect with it. The delays and the amplitude of the echoes are changed by changing 

the values of R and alpha. In the Figure 15 block diagram, Mat Lab script was added. It helps to 

use the variable data and modify the sound that is acquired from the input.  

Lessons Learned: Even though we were able to make the delay effects due to time management 

issues we could not apply it with audio equalizer. Even though it is possible to sum up two ideas 

together.  

 

 

 

 

 

 

 

 

 



Final Project- Audio Equalizer  15 
 

 

Fifth Section:  Audio Equalizer with Mat Lab 
The outlook of the audio equalizer built with Mat Lab is shown in Figure 16.  

 
Figure 16: Audio Equalizer Using Mat Lab 

Function: This audio equalizer contains three bands low, mid and high. The Slider option allows 

to choose value of the filter. The plot displays the characteristics of the filter. Load option allows 

to choose only .wav file to read. When the files is loaded using the option load and the song is 

played after the clicking button play, the .wav audio starts to play with respect to filter 

characteristics. When the song is played, the change in slider value changes sound of the audio. 

However, the plot characteristic change can only be seen after the audio files stops playing or 

before playing the audio file. 

 

 

 

 



16  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

 

 

Figure 16: GUI created using Mat Lab 

The previous figure shows the GUI generated for the audio equalizer. At the top it shows three 

different slayers, each one of them is used to display the range of the filters. The first slider is the 

low pass filter which represents the bass of the audio, the second slider is a band-pass filter 

which represent the mid of the audio and finally the last slider is a high-pass filter which 

represents the treble of the audio. In addition, the guide has different static text used to name the 

different sliders and they also have edit text in order to display the exact number representation 

which arrange by the actual slider. Also the GUI has five different push buttons, each one of 

them symbolizes a function. The first push button “Load” is used to insert an audio file, where 

the user has the option to upload an audio file from the computer. The second push button “plot” 

is used to display the different filters and frequencies that are set up by the sliders. The third push 

button “Reset” is used to reset the graph and the sliders back to zero which is the established 

value. The fourth button “Play” is used to start the audio file and plays as long as the file audio is 

playing. The fifth button “Stop” is used only to stop the audio file that is playing. Finally the 

GUI has an added graph which displays the different filter values by their frequency and their 

magnitude as decibels.  



Final Project- Audio Equalizer  17 
 

 

All the different components used in GUI were also re arranges to display a certain color, a 

unique display size, also the string texts were changed to their respective names and a tag name 

was also added in order to recall the component throughout the code. 

 

The Code for the Matlab with Explanation: 

The following code represents all the programming functions that are connected to the previous 

GUI. A lot of the code is automatically generated by Mat lab which represents the GUI itself and 

the different components added. 

In order to describe the functionality of the audio equalizer’s code, the code will be divided by 

the different functions and an explanation would be add before each function. 

1. The function “varargout” is an automatically generated function which calls on the GUI 

and describes some general state functions that will be derive along the final code. 

 
function varargout = Equalizer(varargin) 

% EQUALIZER MATLAB code for Equalizer.fig 
%      EQUALIZER, by itself, creates a new EQUALIZER or raises the existing 
%      singleton*. 
% 
%      H = EQUALIZER returns the handle to a new EQUALIZER or the handle to 
%      the existing singleton*. 
% 
%      EQUALIZER('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in EQUALIZER.M with the given input arguments. 
% 
%      EQUALIZER('Property','Value',...) creates a new EQUALIZER or raises 

the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Equalizer_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Equalizer_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help Equalizer 

  
% Last Modified by GUIDE v2.5 14-Apr-2014 14:25:36 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Equalizer_OpeningFcn, ... 
                   'gui_OutputFcn',  @Equalizer_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 



18  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  
  

2. The function “Equalizer_Opening” is the function that represents the range and value of 

the sliders and their respective edit text by using the set function. The tag of the low pass 

slider and edit text is (C1_var and C1_val) respectively and their range is determined by 

the min value -20, a max value 20, the standard value 0 and a string which represents the 

edit text input that would be display into the graph and the slider, by using the function 

num2str. Also the global functions where introduce by defining a sample frequency (Fs), 

a stop function which determines when the audio file is stop and there is a C vector that 

will be use later on the code. Such global functions are used in order to recall variables 

throughout the whole code without having to re state the variables.  
 

 
% --- Executes just before Equalizer is made visible. 
function Equalizer_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Equalizer (see VARARGIN) 
global stop C Fs; 
stop=1; 
Fs=44100; 
C=zeros(1,3); 
set(handles.C1_var,'min',-20); 
set(handles.C1_var,'max',20); 
set(handles.C1_var,'value',0); 
set(handles.C1_var,'SliderStep',[0.025,0.05]); 
set(handles.C1_val,'string',num2str(0)); 

  

  
set(handles.C3_var,'min',-20); 
set(handles.C3_var,'max',20); 
set(handles.C3_var,'value',0); 
set(handles.C3_var,'SliderStep',[0.025,0.05]); 
set(handles.C3_val,'string',num2str(0)); 

  

  

  
set(handles.C5_var,'min',-20); 
set(handles.C5_var,'max',20); 
set(handles.C5_var,'value',0); 



Final Project- Audio Equalizer  19 
 

 

set(handles.C5_var,'SliderStep',[0.025,0.05]); 
set(handles.C5_val,'string',num2str(0)); 

  
equalizer_plot(); 

  

  
% Choose default command line output for Equalizer 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes Equalizer wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

3. Function “varargout = equalizer” is also an automatically generated function which 

describe the function that are returned into the command line by the application of cells. 
 

 
% --- Outputs from this function are returned to the command line. 
function varargout = Equalizer_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

4. Function “load_Callback” is the execution of pressing the load on the GUI which 

represents the user’s option to go into their computer to find an audio file (wav audio files 

are only read). Such execution is done by using the uigetfile variable which brings into 

the GUI an external file, in this case an audio file which is identifies by the name 

file_name. The file_name would be recall later on the code by using the global variable. 

 
 

 
% --- Executes on button press in load. 
function load_Callback(hObject, eventdata, handles) 
% hObject    handle to load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global file_name; 
file_name=uigetfile('*wav'); 

 

5. Function “plot_H_Callback” is the execution when pressing the plot 
button on the GUI which recalls the equalizer_plot() function which 

will be describe later in the code. 

 

  
% --- Executes on button press in plot_H. 
function plot_H_Callback(hObject, eventdata, handles) 



20  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

% hObject    handle to plot_H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global C Fs; 
equalizer_plot(); 
  

 

6. The function “equalizer_plot” is use to assign the variables, names and values that are 

displayed at the graph of the GUI. Here a for loop is implemented in order to determine 

the three different frequency response vectors (H), which are found by calculating the 

frequency supply by the (a,b) coefficients and 1024 samples, by using the freqz variable 

and multiply the input value C. The (a,b) coefficients will be explain in the next section 

and the value of C corresponds to the input value generated by the sliders.  

 

The plot consists on displaying the frequency ranges which is determine by the most 

common audio frequency range plot at the x- axis going from (0kHz to 22kHz) and the 

frequency response displayed in the decibels on the y-axis. In addition to the graph, 

different labels where assign to the graph such as the Magnitude in the y axis and the 

frequency on the x axis. 
 

 
function equalizer_plot() 
global C Fs; 
[a,b]=coef(); 
H=0; 
for i=1:3 
    H=H+10^(C(i)/20)*abs(freqz(b{i},a{i},1024)); 
end 
plot(1e-3*Fs*[0:1023]/2048,20*log10(H)); 
xlabel('Frequency [kHz]'); 
ylabel('Magnitude [dB]'); 
title('Audio Equalizer'); 
axis([0 1e-3*Fs/2 -21 21]); 
grid on; 

  

7. The function [a,b]=coef() is used in order to create the filters used in the graph. Here the 

variable cheb1ord and cheby1 are used. The cheb1ord describes the filter into four 

different characteristics, such as the pass band corner frequency, the stop band corner 

frequency, the attenuation of the stop band and the pass band ripples. In other words the 

pass band is the frequencies that are going to be allow into filter and the stop band is the 

attenuation of the filter which rejects some frequencies depending on the filter. For a low 

pass filter the pass band allows small frequencies to pass and attenuates high frequencies. 

The attenuation stop band is the distance between the pass band and the stop band. Then 

we used the variable cheby1 which generates a Chebyshev filter that consist on 

determining the exact filter that is being used such as low, high or band filter. 
 

function [a,b]=coef() 
global Fs; 
% Filter 1 
Rp1=0.5; 
Rs1=30; 
Fp1=4.1e3/(Fs/2);  %%passband                     



Final Project- Audio Equalizer  21 
 

 

Fs1=4.5e3/(Fs/2);   %%stopband                   
n1=cheb1ord(Fp1,Fs1,Rp1,Rs1); %% filter order 1 
[b1,a1]=cheby1(n1,Rp1,Fp1,'low'); %% 'low' to determine what kind of filter 

it is (low filter) 

  
%Filter 2 
Rp3=0.5;       
Rs3=30; 
Fp3=1e3*[4.25,16.8]/(Fs/2);                    
Fs3=1e3*[3.9,17.5]/(Fs/2); 
n3=cheb1ord(Fp3,Fs3,Rp3,Rs3); 
[b3,a3]=cheby1(n3,Rp3,Fp3);  %(band pass)  

 

  
%Filter 3 
Rp5=0.5; 
Rs5=30; 
Fp5=1e3*17/(Fs/2);                   
Fs5=1e3*17.4/(Fs/2); 
n5=cheb1ord(Fp5,Fs5,Rp5,Rs5); 
[b5,a5]=cheby1(n5,Rp5,Fp5,'high'); %% High passs 
a={a1,a3,a5}; 
b={b1,b3,b5}; 
 

 

8. Function “reset_Callback” is the execution of pressing the reset button on the GUI, which 

sets up the values of sliders and their respective edit test back to zero, including the 

graph. 

 
% --- Executes on button press in reset_H. 

function reset_H_Callback(hObject, eventdata, handles) 
% hObject    handle to reset_H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Fs C; 
C=zeros(1,5); 
Fs=44100; 
set(handles.C1_val,'string',num2str(0)); 
set(handles.C3_val,'string',num2str(0)); 
set(handles.C5_val,'string',num2str(0)); 

  
set(handles.C1_var,'value',0); 
set(handles.C3_var,'value',0); 
set(handles.C5_var,'value',0); 

  
equalizer_plot(); 

  

9. The function “play Callback” is use to run the file that has been upload by the load 

function.  
 
% --- Executes on button press in play. 
function play_Callback(hObject, eventdata, handles) 
% hObject    handle to play (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



22  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

% handles    structure with handles and user data (see GUIDATA) 
global stop file_name C; 
stop=1; 
equalizer_play(); 
  

10. The function “equalizer_play()” is used to cut off the complete file or the complete 

frequency into small segments. The segments are based on cutting of the frequency range 

into the frequency sample. The small segments will be used as a delay whenever there is 

a change in the values of the filters. In this case the filter variable is (filter) which has the 

same characteristics of the filters used previously, but here the filters are only related to 

the audio file frequency characteristics. Every time the values of the sliders are change 

the new values are saved as variables by the ([a,b]coff) which have some fix 

characteristics described by the cheb1ord function, then the filtering variable uses the 

new coefficients to change the audio file sound features. Using a for loop help us run the 

three different filters at the same time while making sure the playing function stops as the 

song is over or as the stop button is press (stop==0). 
 

function equalizer_play() 
global stop file_name C; 
[x,Fs]=wavread(file_name); %% x is the data and Fs is the sampling frequnecy 
[a,b]=coef(); 
l_segment=2*Fs; 
Nb=round(length(x)/l_segment); 
y=0; 
for i=1:floor(Nb) 
    segment=x((i-1)*l_segment+1:i*l_segment); 
    for k=1:3 
        y=y+filter(10^(C(k)/20)*b{k},a{k},segment); %%Amplifiyng the signal, 

(B = numerator, A=denominator) 
        if(stop==0) 
            break; 
        end      
    end 
    wavplay(y,Fs,'async'); 
    y=0; 
    if(stop==0) 
        break; 
    end    
end 
  

11. The following functions “C1_var_Callback”, “C3_var_Callback” and the 

“C5_var_Callback” are based on describing the vector C. The vector C will take values 

from the three different sliders by defining the exact magnitude response according to the 

value of the sliders. This vector C will be recall throughout the rest of the code by using 

the variable “Global”. These functions are also interrelated with the C(X)_val_Callback 

functions in order to exchange their values with one another. To save the values as a 

strings the values must be change from numbers to strings by using the num2str variable. 

 
% --- Executes on slider movement. 
function C1_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C1_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



Final Project- Audio Equalizer  23 
 

 

% handles    structure with handles and user data (see GUIDATA) 
global C; 
C(1)=get(hObject,'value'); 
set(handles.C1_val,'string',num2str(C(1))); 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 

slider 

  
% --- Executes on slider movement. 
function C3_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C3_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global C; 
C(2)=get(hObject,'value'); 
set(handles.C3_val,'string',num2str(C(2))); 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 

slider 

  

 
% --- Executes on slider movement. 
function C5_var_Callback(hObject, eventdata, handles) 
% hObject    handle to C5_var (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of 

slider 
global C; 
C(3)=get(hObject,'value'); 
set(handles.C5_val,'string',num2str(C(3))); 

  
 

12. The following functions “C1_val_Callback”, “C3_val_Callback” and the 

“C5_val_Callback” are based to describe the values on the edit texts by setting the value 

into a string and changing the position of the sliders according to the values. It uses an if 

loop in order to keep the range between the min and the max values, in case the value  of 

the C(x)_val is higher or lower than the minimum range the string would save a 0 value 

which would make the sliders and the edit text display to reset to zero. 
 

function C1_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C1_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C1_val as text 
%        str2double(get(hObject,'String')) returns contents of C1_val as a 

double 
global C; 
C(1)=str2num(get(hObject,'string')); 



24  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

minn=get(handles.C1_var,'min'); 
maxx=get(handles.C1_var,'max'); 
if(C(1)<minn || C(1)>maxx) 
    C(1)=get(handles.C1_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C1_var,'value',C(1)); 
end 

  
% --- Executes during object creation, after setting all properties. 
function C1_val_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to C1_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
function C3_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C3_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C3_val as text 
%        str2double(get(hObject,'String')) returns contents of C3_val as a 

double 
global C; 
C(2)=str2num(get(hObject,'string')); 
minn=get(handles.C3_var,'min'); 
maxx=get(handles.C3_var,'max'); 
if(C(2)<minn || C(2)>maxx) 
    C(2)=get(handles.C3_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C3_var,'value',C(2)); 
end 

  

 

  
function C5_val_Callback(hObject, eventdata, handles) 
% hObject    handle to C5_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of C5_val as text 
%        str2double(get(hObject,'String')) returns contents of C5_val as a 

double 
global C; 
C(3)=str2num(get(hObject,'string')); 
minn=get(handles.C5_var,'min'); 
maxx=get(handles.C5_var,'max'); 
if(C(3)<minn || C(3)>maxx) 
    C(3)=get(handles.C5_var,'value'); 
    set(hObject,'string',num2str(0)); 
else 
    set(handles.C5_var,'value',C(3)); 
end 

 



Final Project- Audio Equalizer  25 
 

 

13. The function “stop_Callback” is based stopping the audio file as the stop button is click 

or as the audio file length is compete. 
% --- Executes on button press in stop. 
function  

stop_Callback(hObject, eventdata, handles) 
% hObject    handle to stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global stop; 
stop=0; 

 



26  EENG 1920 Project II : Introduction to Electrical 
Engineering 

  

 

 

 



Final Project- Audio Equalizer  27 
 

 

Problems in the Implementation 
The problem throughout the process was to figure out how to constantly make the sounds alter in 

Lab View and see the changes in waveform which took most of our time. Also, implementing the 

plot and the graph in Mat Lab Graphical User Interface was not working properly at the 

beginning. 

 

Team Work 
With this project, we actually learned the importance of working as a team. First we decided to 

understand the abilities and skills of one another and how could they be applying into the project. 

We all knew something better at one topic than one another. With that being said we combined 

everything we knew at our best making the project a lot easier to work. Then we learned each 

other’s schedule to see when meeting up was more appropriate for every one on the team. Meeting 

up together was quite hard as we all had very busy schedules so we decided to work on it 

separately, so whenever we would meet up we could exchange ideas and experiences. We also 

learned that communication is a key for success, as we were in contact with other at all times by 

using web programs such as email and Google drive so we could share information and ideas with 

each other. 





Final Project- Audio Equalizer  29 
 

 

 

Websites 

Lab View 

http://www.ni.com/white-paper/11433/en/ 

http://cnx.org/content/m14772/latest/lvt_audio-realtime-output.html 

 

Mat Lab 

http://www.mathworks.com/matlabcentral/fileexchange/23982-digital-audio-equalizer 

 

Images 

http://www.songsofthecosmos.com/encyclopedia_of_modern_music/A/audio_spectrum.html 

http://en.wikipedia.org/wiki/Low-pass_filter 

http://en.wikipedia.org/wiki/Band-pass_filter 

http://en.wikipedia.org/wiki/High-pass_filter 

http://www.ni.com/white-paper/11433/en/
http://cnx.org/content/m14772/latest/lvt_audio-realtime-output.html
http://www.mathworks.com/matlabcentral/fileexchange/23982-digital-audio-equalizer
http://www.songsofthecosmos.com/encyclopedia_of_modern_music/A/audio_spectrum.html
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Band-pass_filter
http://en.wikipedia.org/wiki/High-pass_filter

