FINAL PROJECT: DIGITAL CLOCK

Due: 04/30/2014

EENG 2910 Project I11: Digital System Design \\

Team Members:
SHABUKTAGIN PHOTON KHAN Q

YOUSSIF MAHJOUB %
ZHENHAI LOU ’Q\

University of North Texas
Department of Electrical Eng@g

Table of Content i

Contents

Y o 4 = o 3

Final Project — Digital Clock 3

ABSTRACT

The Final Project gives us the opportunity to work on Xilinx ISE, basy2board and VHDL to
work on a brief report for it. The objective of the project was to make a digital clock. The project
will not be focused on alarm.

INTRODUCTION QA\\

The digital system is an interconnection of digital modules designed to perforga
functions. VHDL stands for very high-speed integrated circuit (VHSIC) ha
language. It was originally sponsored by the U.S department of Defensg.anthater transferred to

the IEEE (Institute of Electrical and Electronics Engineers). VHDL i %- describing and
modeling a digital system at various levels and is a complex Iangue%

VHDL model is a complete VHDL component descripti A@@ an entity and an
architecture. The entity describes the component’s interf itecture defines the
ru

1, behavioral. In port modes

component’s function and architectural description is t a
there are four default modes in VHDL in, out, inout er.

We worked with the BASYS2 Spartan 3E Kita&ﬂ%]x ISE to perform the objective. The
Basy2 board is a circuit design and implem®@gtation platform that anyone can use to gain
experience building real digital circui PGA on the basys2 board are programmed by the
user before it can perform any funct e Basys2 board includes several input devices,
output devices, and data port: many designs to be implemented without the need for
any other components. Q

4 EENG 2910 Project Il : Digital System Design

REPORT

This report has been divided to different sections since to make the digital clock we used PORT
Map to glue up several VHDL files to work together as one. Figure 1 shows the RTL schematic
diagram of the Digital Clock VHDL file.

Figure 1: RTL Schematic Diagram of al Clock VHDL file

The digital_clock block has Ggi t%k clk, reset, incr_min, incr_minZ1, incr_hour and
incr_hourl. It has 2 outputs ond@s “thux” and the other “output.” Inside the whole block there is
6 blocks and each of th Q@ur different functions. The clk1Hz block makes the VHDL file
works according to the&x he counter_clock block is where the relationship between hours,

minutes and seconds'i ibed. In the seven segment_block _complete block there is 3 more
blocks. The cl ock makes the display of the segment display refresh after few

millisec he,Seven_segment_mux helps to decide whether number should display in AN3
or AN2 or ANO as shown in Figure 2. The seven_segment block decides what to display

m& isplay output.

AMN3 ANZ AN1 ANO
= R
= N e e
D VY I
CACB CC €D CE CF €6 DP

Figure 2: Mux Decision

Final Project — Digital Clock 5

Oscillators

The Basys2 board includes silicon oscillator which produces oscillation at 50MHz, which is the
primary oscillator which is connected to global clock input pins at pin B8. Figure 3 shows the B8

pin.

Figure 3: B8 Pin ®

Clk1Hz %
The basys2board has a silicon oscillator that produces 25 %O Hz or 100MHz based on the
d d

position of the clock select jumper at JP4. The primary ary pins at pin B8 and pin M6
respectively. To make the clock with respect to seco uency divider rule was applied

Formula: %
Scaling Factor=Frequency of the board/ Requited Frequency

As we know, time= 1/frequency. Thekefa 8 need 1Hz.
Oscillator is 50 MHz and the requir

50M/1=50M cycles \Q
Only considering the rising e& refore we needed 50M/2= 25M cycles
a

1Hz clock: is used as input%q o the counter (we will count every second).
A clock signal while \ ing the high than in low; for this particular case, 25000000 cycles
25000000 cycles m . Since we started counting at zero, the upper limit is 25000000-1.

The signal rese\%
4,

reset the counter. The block diagram of the clk1Hz is shown in Figure

Figure 4: Clk1Hz

6 EENG 2910 Project Il : Digital System Design

The VHDL code for clk1Hz is shown below

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;

entity clk1Hz is
Port (

input: in STD_LOGIC,; \\
reset :in STD_LOGIC,; Q
output : out STD_LOGIC Q

); Q)
end clk1Hz; &
architecture Behavioral of clk1Hz is %Q

signal temporal: STD_LOGIC; Q

signal counter: integer range 0 to 24999999 := 0;

begin %
frequency_divider: process (reset, input) begin Q

if (reset ='1") then (b
temporal <="'0"; \Q
counter <= 0; &

elsif rising_edge(input) then Q
if (counter = 24999999) then \

temporal <= NOT (te por%
counter <= 0; &Q

else
counter <= cou Q{
end if; \
end if;

N

. &@poral;

Final Project — Digital Clock 7

Counter Clock

Figure 5 shows the block diagram of the counter clock. It has 6 inputs clk, incr_hour, incr_hourl,
incr_min, incr_minl and reset. It has 4 outputs HO, H1, M0 and M1.

counter_clock

Figure 5: Counter Clock @

The input of the counter_clock is the outp he*clk1Hz block so that it can use the logic of 1
second. incr_hour, incr_hourl, incr_mi \minl are the inputs which will be used as a switch
to increment the value of the each digits’ designated digits are shown in figure 6.

e on] s e Q\.(Q

’_ In&g_hour

--------‘rourl
Figure 6: Designate%\

The outputs of ter_clock are M0, M1, HO and H1.

8 EENG 2910 Project Il : Digital System Design

The VHDL code for Counter_Clock is shown below with box explanation
The words in italic are not in the code

library IEEE;
use IEEE.NUMERIC_STD.ALL;
use IEEE.STD _LOGIC_1164.ALL;

entity counter_clock is Q\\
PORT (Q
clk : IN STD_LOGIC; <

reset: IN STD_LOGIC; &
incr_hour : IN STD_LOGIC; <
incr_min : IN STD_LOGIC,;

incr_hourl: IN STD_LOGIC; §\

incr_minl: IN STD_LOGIC;

H1 :OUT STD_LOGIC_VECTOR(2 D%
W

0);
HO :OUT STD_LOGIC_VECTOR(3 0 0);

M1 :OUT STD _LOGIC VECTOR NTO 0);
MO :OUT STD_LOGIC_V WNTO 0)
);

end counter_clock;

o O\

N\J
MO0 and HO are 3 downto 0 bec%:\qs of binary it is 4 binary numbers starting from

“0000. ” Therefore 2 to the p . Hence we know M0 and HO are the number from 0 to
15. M1 and H1 are 2 downto&ma se in terms of binary it is 3 binary numbers starting from
“000.” Therefore 2 to thé@(}’ is 8. Hence we know M1 and HI are the number from 0 to 7.

architecture Beha\@f@unter_clock is

signal mm: D(5 downto 0) := "000000" ;
Si »UNSIGNED(2 downto 0) :="000" ;
Si mO0: UNSIGNED(3 downto 0) :="0000";

h1: UNSIGNED(2 downto 0) :="000" ;
c-)' al hh0: UNSIGNED(3 downto 0) :="0000";
Signal mm, mm0, mm1, hhO, hh1 are produced inside the counter_clock block. This signals uses
the clock of 1Hz

Final Project — Digital Clock 9

begin
clock: process (clk, reset) begin
if reset = '1' then

hhl <="000";
hh0 <="0000";
mm1 <="000";

mmoO <= "0000";

mm<= "000000": %
When the reset will be turned on or in other words when it will be 1 it will turn tqi%o h

hh1, hhO, mm1, mmO and mm to O.
elsif incr_hourl ='1' then &Q)

hhi <= hhi +1; Q

if hhl =2 then %

hhl <= "000";

end if; Q
elsif incr_hour ='1" then %
hh0 <= hh0 +1;
if hh0 = 9 then fb%

\

hh0<="0000";
end if;

Q
elsif incr_minl ="1" then Q
mml <=mml + 1\()
if mm1 =5 then Q
mml < ;

end if;
elsif incr i ' then

mm_ 0+1;
K@ then

\§ <= "0000";

Qg if;

\% hl =2 AND hh0 > 3 then
(_\ (b hh1 <="000";

9

12:56 <<With respect to this image, if incr_min is high then it will increment the value of 6 to 7. If
incr_minl is high it will increment the value of 5 to 6. If incr_hour is high, it will increment the
value of 2 to 3. If the incr_hourl is high, it will increment the value of 1 to 2. Incr_min will
increment the 0 to 9 then it again starts from 0. Incr_min1 will increment from 0 to 5 then it
again starts from 0. Incr_hour will increment from 0 to 9 then it again starts from 0. Incr_hourl

10 EENG 2910 Project Il : Digital System Design

will increment from 0 to 2 then it will again start from 0. If the value of incr_hour is more than 3
and the value of incr_hourl is 2 then it will turn both the incr_hour as well as incr_hourl to 0.

elsif rising_edge(clk) then
mm<= mm+1;

if mm =59 then

mmO0 <=mmo0 + 1, ~\\

mm<="000000"; Q)

end if; Q\

if mmO0 = 9 then Q)
mml<=mml+ 1; &
mmO <= "0000"; Q

end if; %

if mm1 =5 AND mmO = 9 then
hh0 <= hh0 + 1; %
mm1 <= "000";
end if; fb%
if hhO = 9 then \Q
hhl <= hhl + 1&
hho <= "00 Q
end if; \@

if hhl \@10 =3 AND mm1 =5 AND mmO = 9 then
<="000";
‘\Swo <= "0000";

o pr{’@

When th Q\ﬁ{s the rising edge it will make mm signal increment by 1. Therefore, the mm

Si %ke seconds. When the mm signal reaches 59 seconds, the mm signal becomes 0 and
it ts the value of mmO by 1. When the mmO reaches 9 it increments the mm1 by 1 and
mmoO itSelf becomes zero. When the mm1 reaches 5 and mmO reaches 9 it increments the values
of hhO by 1 and both mm1 and mmO becomes 0. When hh0O becomes 9 it increments the value of
hhl by 1. When hh1 becomes 2, hhO becomes 3, mm1 becomes 5 and mmO becomes 9, all the
value resets.

Final Project — Digital Clock

H1 <=STD_LOGIC_VECTOR(hhl);

HO <=STD_LOGIC_VECTOR(hh0);

M1 <=STD_LOGIC_VECTOR(mm1);

MO <= STD_LOGIC_VECTOR(mmO);
end Behavioral;

The signal mm0,mm1,hh0 and hhl are assigned to the variables MO,M1,H0,H1
So in brief, Counter clock is the component which is responsible for counting fr

The counter mmO account 0-9, incremented by one each time it receives the cl

The counter hh0 account 0-9, incremented by one each time mm1 is
The counter hh0 account 0-2, incremented by one each time hh0 sy
Counters hour hh0 and hh1, return to zero when the time is 2%

11

om %‘19
hours and 0 to 59 for minutes.The reset is responsible for returning the countE
k stemal.

is 9 (hourly).

12 EENG 2910 Project Il : Digital System Design

Clk200Hz

For each of the four digits to appear bright and continuously illuminated at 7 segment display of
basys2 board, all four digits should be driven once every 1 to 16ms. For example, in a 60Hz
refresh scheme, the entire display would be refreshed once every 16ms, and each digit would be
illuminated for ¥ of the refresh cycle, or 4ms. To illuminate all AN1, AN2, AN3 and AN4 we
took 200Hz to make digits illuminate constantly. This circuit drives the anode signals and

corresponding cathode patterns of each digit in a repeating, continuous succession, at a ate
rate that is faster than the human eye response. A

-y

Common anode

, 1~

Arlu Ar|42 Ar|43 Ar;u f? ; , ’_ _,

=1 IZHIZ [O A -

N Ay N |

CIA ClB CIC ClD ClE CIF CIG DIP 1 —’ ’ :’ ,: '

Four-digit Seven , '._..., ._..’
Segment Display

An un-illuminated seven-segment display, and nine
illumination patterns corresponding to decimal digits
Individual cathodes

Figure 8: To illuminate all AN1, AN2, AN3 ar@k)

Calculations:
The calculation process is similar to GKO ing frequency divider rule.
Oscillator is 50 MHz and we need o% 200Hz

50M/200 = 250,000 cycles \§
Since we are considering only rising edge

We would be needing 2 Q‘k 125,000 cycles

ram of the Clk200Hz

clk200Hz
4 N

-

Figure 9 showst

Figure 9: Clk200Hz

Final Project — Digital Clock

The VHDL code for clk200Hz is shown below

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;

entity clk200Hz is
Port (
input: in STD_LOGIC,;
reset :in STD_LOGIC,;
output : out STD_LOGIC
);
end clk200Hz;

architecture Behavioral of clk200Hz is
signal temporal: STD_LOGIC;
signal counter: integer range 0 to 124999 :=0;
begin
frequency_divider: process (reset, input) begin
if (reset ='1") then

counter <= 0;
elsif rising_edge(input) then Q
if (counter = 124999) then \

temporal <= NOT(te por%
counter <= 0; &Q

temporal <="'0"; @

else
counter <= cou Q{
end if; \
end if;

N

. &@poral;

13

@
\Q%
Q

14 EENG 2910 Project Il : Digital System Design

Seven Segment Mux
Figure 10 shows the seven segment mux.

seven_segment_mux

), S

Figure 10: Seven Segment Mux ~Q\

In this block, Multiplexor concept is used. A maltiplexer or data selector is a logic circuit that
accepts multiple inputs and only allows onego reach the exit.

The VHDL code for the Multiplex %\Nn below with explanation
The writings in Italic are not i
library IEEE;

use IEEE.STD_LOGIC'l . ;

PANN
entity seven_segme
PORT (%
clk :IN - OGIC;
resety, LOGIC,;
DO TD_LOGIC_VECTOR(5 downto 0);

STD_LOGIC_VECTOR(5 downto 0);
:IN STD_LOGIC_VECTOR(5 downto 0);
D3 :IN STD_LOGIC_VECTOR(5 downto 0);
output: OUT STD_LOGIC_VECTOR(5 downto 0);
MUX :OUT STD_LOGIC_VECTOR(3 downto 0)
);

end seven_segment_musx;

Final Project — Digital Clock 15

DO input uses the output of H1, D1 input uses the output of HO, D2 uses the output of M1 and D3
uses the output of MO. Its clk input uses the output of clk200Hz.

architecture Behavioral of seven_segment_mux is
type states is (rst, v0, v1, v2, v3);
signal state : states;

begin

displays: process (reset, clk) begin \\
if (reset ='1") then Q
state <= rst; Q
MUX <= x"F"; Q)
output <="111111"; &
elsif rising_edge(clk) then Q
case state is %
when v0Q =>
output <= D3; Q

MUX <="1110"; Q
state <= v1;
S

when vl =>
output <= D2; \<
MUX <="1101"; \
state <= v2; Q
when v2 => \g
output <= D1; Q
MUX <= "1011" \Q
state <= v3;
when others = Q
output <= \
MUX= ;
st

When the MUX <= "1110" it turns the ANO on and the value D3 is assigned to MUX <= "1110"
When the MUX <="1101" it turns the AN1 on and the value D2 is assigned to MUX <= "1101"
When the MUX <= "1011" it turns the AN2 on and the value D1 is assigned to MUX <= "1011"
When the MUX <="0111" it turns the AN3 on and the value DO is assigned to MUX <= "0111"
With respect to Figure 2.

16 EENG 2910 Project Il : Digital System Design

Seven Segment Display
Figure 11 shows the block diagram of the seven segment.

seven_segment

input(5:0)

Figure 11: Seven Segment Display ‘

The ideas behind the seven segment display areghgxﬂ&gure 12

1/0 Circuits

%+ Pinsfor » o
display selection (anode signals) > Digilent BASYS 2 Board

Logic O: enable display

& e 3 Pu
Logic 1: disable display IV puttos - th0s
T~ G12 e
J MIE b
{(Labels on boards are wrongll) N - C11 B7 t_H’_,,_‘
I e ™ v M4 PG — =P
From left to right: E\ NS A2 bl
BASYS board: NP W N4 25 gt
5 P4 25t et
AN3 AN2 AN1 ANO v \z:("\”:i..;x,;%_
3.3V GA
P26 P32 P33 P34 P S o B
=—o J1z} o
BASYS2 board: g M13 | {

K14}~ I e

AN3 AN2 AN1 ANO

o o o
O ot Ot
—

Lid}v—,

H12f v
Ni1dpvo—

N11

Ki4 Mi13 1J12 F12

** Pinsfor

each barof the 7-segment P12}y
display L
{cathode signals) L o

Logic O: LED on pwetey

Logic 1: LED off
Figure 12: Seven Segment Logic

Final Project — Digital Clock

17

The VHDL code for the Seven Segment is shown below with explanation

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity seven_segment is
PORT (

input: IN STD_LOGIC_VECTOR(5 downto 0);
output : OUT STD_LOGIC_VECTOR(7 downto 0)

);

end seven_segment;

architecture Behavioral of seven_segment is

begin

display: process (input) begin

case input is

when "000000" =>
when "000001" =>
when "000010" =>
when "000011" =>
when "000100" =>
when "000101" =>
when "000110" =>
when "000111" =>
when "001000" =>
when "001001" =>
when "001010" %

output <= x"C0"; --0
output <= x"F9"; -- 1

output <= x"A4"; --
output <= x"B0"; ¢
output <= x"99"; --

output <= x" -
output <X -6
out ut<§8 7
0", --8
outplit <= x"98"; -- 9

ut <= x"88": -- A

when "001011" @ﬁut <=x"83"; - B
when "oo% put <= X"C6"; - C

when " 5 =>
0" =>
111" =>

"010000" =>
(-)N n "010001" =>

hen "010010" =>
when "010011" =>
when "010100" =>
when "010101" =>
when "010110" =>
when "010111" =>

output <= x"Al1"; --D
output <= x"86"; -- E
output <= x"8E"; -- F
output <= x"90"; -- G
output <= x"89"; -- H
output <= x"E6"; -- |
output <= x"E1"; --J
output <= x"85"; -- K
output <= x"C7"; -- L
output <= x"C8"; -- M
output <= x"AB"; -- N

18 EENG 2910 Project Il : Digital System Design

when "011000" => output <= x"C0"; -- O
when "011001" => output <= x"8C"; -- P
when "011010" => output <= x"98"; -- Q
when "011011" => output <= X"AF"; --R
when "011100" => output <= x"92"; -- S

when "011101" => output <= x"87"; -- T

when "011110" => output <= x"E3"; -- U

when "011111" => output <= x"C1"; -- V \\
when "100000" => output <= x"E2"; -- W Q
when "100001" => output <= x"8F"; -- X Q
when "100010" => output <= x"91"; -- Y Q)
when "100011" => output <= x"B6"; -- Z &
when "100100" => output <= x"BF"; -- - Q
when "100101" => output <= x"F7"; -- _ %
when "100110" => output <= x"7F"; -- .
when others => output <= x"FF"; -- None Q
end case; %
end process;
end Behavioral, (bQ
Explanation: A seven-segment display consist en light-emitting diodes (LEDs) arranged
in a pattern as shown in Figure 13, and sone ihclude an eighth LED for the decimal point. Two

types of displays according to their eI onnections: common anode and common cathode .
1 for OFF (negative logic).

In common anode, a 0 is used for
Otherwise, one uses a come EDs to turn on and zero to turn off (positive logic).

NN
o
S

9"
e%uc
d

Figure 13: LEDs Arrangement

Final Project — Digital Clock 19

Having 7 LEDs can generate a total of 128 combinations, although not all of them make up
characters. The symbol table and the following characters are encoded is 10 digits (0 through 9),
26 letters (A through Z), and characters _, -, and . . these 37 symbols to represent 6 bits are
needed (five to 32 bits can represent values only). This process of assigning a number to each
character is called encoding. Finally, to display the digit on a seven-segment display is necessary
to decode the numerical value according to the pattern indicated LEDs. This decoding is
performed assuming that the display is common anode (active zero, one off).

In brief, initially has a character which is assigned a numerical value (coding) to deal NQV\

digitally subsequently transforms the pattern corresponding LEDs (decoding). Q
r

Hardware description

The hardware description is responsible for determining which LEDs are lit based on the input value of six bits for
each of the 37 different symbols and a case to cover any possible value. The bit order shown in Table 1.

Table 1: Bit corresponding to each segment.

Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bitl Bit0

dp g F and b to

d C
Figure 14: Hardware Description (& N
When "000000" => output <=x "C0"; -0 @

So it assigns the hexadecimal value "€Q' %That translates to the following binary value:
"11000000", implying that the seg
and the other low. For comn& onnection which is handled at the Basys2 card, the

rresponding to the decimal point and led g are high
LEDs dp and g are off and the 6therted are on.

AN
For example: Qé

For “0” numb ,\lnary number is “000000” which is 11000000

Bit 7 B) | BitS Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 0 0 0 0

d f e d C b a
N\

Binary to Hexadecimal conversion

1100 0000

C o

Therefore “CO”

20 EENG 2910 Project Il : Digital System Design

Ports and Port Map

Basically, the steps for the declaration of a component relative to the VHDL module are:
e ltreplaces the keyword ENTITY by keyword COMPONENT.
e Component ports identically as they appear in the module are listed.
e It ends with the statement END COMPONENT

PORT MAP: is responsible for instantiating a component and determine its connection \

other components Q

Tag: Chain CLK | becomes the name of the component instance. This is necegsa ause each
instance must have a name to be able to differentiate from each other. Thgdabe t be a unique
name to avoid conflicts existential synthesis tools

Component being instantiated: It Specifies the name of the compgone ing instantiated (in this
case our frequency divider). To this point, there must be a c t declaration somewhere in
the main module.

Keyword PORT MAP: It is indicating that the comp Q«ill stantiate and assign the input
and output signals to the instance. \&h
Port List: Here the signals that are require@nsmnce and the signals are assigned to

receive the output value is sent. Q

VHDL Code for Seven Seg@nplete
library IEEE; * Q
o

use IEEE.STD_LOG ALL;

entity seven_s *mmplete IS
POR

clk s TD_LOGIC;

NN STD_LOGIC
:IN STD_LOGIC_VECTOR(5 downto 0);
:IN STD_LOGIC_VECTOR(5 downto 0);
D2 :IN STD_LOGIC_VECTOR(5 downto 0);
D3 :IN STD_LOGIC VECTOR(5 downto 0);
output: OUT STD_LOGIC_VECTOR(7 downto 0);
MUX :OUT STD_LOGIC_VECTOR(3 downto 0)

Final Project — Digital Clock

end seven_segment_complete;

architecture Behavioral of seven_segment_complete is

COMPONENT clk200Hz IS
PORT (
input: IN STD_LOGIC,;
reset : IN STD_LOGIC,;
output : OUT STD_LOGIC
);
END COMPONENT;

COMPONENT seven_segment IS
PORT (

input: IN STD_LOGIC_VECTOR(5 downto 0);
output : OUT STD_LOGIC_VECTOR(7 downto 0)

);
END COMPONENT:

COMPONENT seven_segment_mux IS
PORT (

clk :IN STD _LOGIC;
reset: IN STD_LOGIC;
DO :IN STD_LOGIC_VE
D1 :IN STD_LOGI
D2 :IN STD_LO
D3 :IN STD_LO

|

MUX :OUT G
);

END COMP% :

sl Ot STD_LOGIC := 0"

- STD_LOGIC_VECTOR(5 downto 0):

Obla)
beg'u)
clk=t: clk200Hz PORT MAP(

clk, reset, clk_out

);

mux_i: seven_segment_mux PORT MAP(
clk_out, reset, DO, D1, D2, d3, digit, MUX

S

5 downto 0);
R(5 downto 0);
Gl TOR(5 downto 0);

output: OUT sn\% ‘(\\,/_VECTOR(S downto 0):

IC_VECTOR(3 downto 0)

21

22 EENG 2910 Project Il : Digital System Design

);

seg_i: seven_segment PORT MAP(
digit, output
);

end Behavioral;

VHDL Code for Digital Clock
library IEEE; Q
use IEEE.STD_LOGIC_1164.ALL,; &;\)

entity digital_clock is
PORT(
clk :IN STD _LOGIC; Q
reset: IN STD_LOGIC; %
incr_hour : IN STD_LOGIC; \
incr_min : IN STD_LOGIC; Q
incr_hourl : IN STD_LOGIC; \th
incr_minl: IN STD_LOGIC; %
C

R(7 downto 0);

output: OUT STD_LOGICA%t
MUX :OUT STD L TOR(3 downto 0)
);
end digital_clock; \QQ

architecture Behavioralofﬁl lock is

COMPONENT, S
P %
input: OGIC;

reset ¢ D _LOGIC;

o?q%%T STD_LOGIC

PONENT;

COMPONENT counter_clock IS
PORT (
clk : IN STD_LOGIC;
reset: IN STD_LOGIC,;
incr_hour : IN STD_LOGIC,;
incr_min : IN STD_LOGIC;

Final Project — Digital Clock

incr_hourl:IN STD LOGIC;
incr_minl:IN STD_LOGIC;
H1 :OUT STD_LOGIC _VECTOR(2 DOWNTO 0);
HO :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
M1 :OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
MO :OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
)i
END COMPONENT;

COMPONENT seven_segment_complete IS Q
PORT ((

clk :IN STD _LOGIC; &
reset: IN STD_LOGIC; Q

DO :IN STD_LOGIC_VECTOR(5 down%
);

D1 :IN STD_LOGIC_VECTOR(S d
D2 :IN STD_LOGIC_VECTOR(

D3 :IN STD_LOGIC_VECTOR to 0);
output: OUT STD_LOGIC_VE R{%downto 0);
MUX :OUT STD_LOGIC R(3 downto 0)
);
END COMPONENT,;

signal clk_out: STD_LOGIC QQ

signal HH1, MM1: STQ L ECTOR(2 downto 0);

signal HHO, MMO: S ~VECTOR(3 downto 0);
signal pHH1, pHHO, p 1'pMMO: STD_LOGIC_VECTOR(5 downto 0);
L}

begin \Q
clk_i: Ikr&\e AP(clk, reset, clk_out);
cnt_i: couhtenelock PORT MAP(clk_out,
reset,inc IRgM min,incr_hourl,incr_minl,HH1, HHO, MM1, MMO);

HH1 <="000" & HH1;
pHHO <="00" & HHO;
pMM1 <="000" & MM1;
pMMO <="00" & MMO;

end Behavioral;

ven_segment_complete PORT MAP(clk, reset, pMMO, pMM1, pHHO, pHH1,

23

24 EENG 2910 Project Il : Digital System Design

Test bench

LIBRARY ieee;

USE ieee.std_logic 1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY timingminutestb 1S
END timingminutestb;

ARCHITECTURE behavior OF timingminutestb IS

COMPONENT digital_clock &
PORT(Q
clk : IN std_logic; %

reset : IN std_logic;

incr_hour : IN std_logic; Q
incr_min : IN std_logic; %
incr_hourl : IN std_logic;

incr_minl: IN std_logic; fb%

output : OUT std_logic_vector(7 down \fQ

MUX : OUT std_logic_vector(3 downt&

);

| N
END COMPONENT; \‘Q
X

b logic :='0"
signal mc > std_logic :='0";
signal }‘@n > std_logic :='0
C-\’}%utputs
sig

output : std_logic_vector(7 downto 0);
signal MUX : std_logic_vector(3 downto 0);

-- Clock period definitions
constant clk_period : time := 10 ns;

Final Project — Digital Clock 25

BEGIN

-- Instantiate the Unit Under Test (UUT)
uut: digital_clock PORT MAP (
clk => clk,
reset => reset,
incr_hour => incr_hour,

incr_min => incr_min, \\
incr_hourl => incr_hourl, Q
incr_minl =>incr_minl, Q
output => outpult, Q)
MUX => MUX &
); Q
-- Clock process definitions Q%

clk_process :process

begin %
clk <="'0" Q

wait for clk_period/2; (b
clk <="1" “
wait for clk_period/2; &

end process; QQ

-- Stimulus process \Q

stim_proc: process Q

e

begin Q
-- hold reset state f \ s.
wait for 100 m®

wait @d*m;

c--\)Q'Kbummus here

watt;
end process;

END;

26 EENG 2910 Project Il : Digital System Design

UCF File

NET "clk" LOC ="B8",
NET "reset” LOC ="N3";

NET "output<7>" LOC ="N13"; #dp
NET "output<6>" LOC ="M12";#g

NET "output<5>" LOC ="L13"; #f

NET "output<4>" LOC ="P12";#e \
NET "output<3>" LOC ="N11";#d Q

NET "output<2>" LOC ="N14"; #c @

NET "output<1>" LOC ="H12";#b

NET "output<0>" LOC ="L14";#a Q

NET "MUX<3>" LOC ="F12";
NET "MUX<2>" LOC="J12"; %
NET "MUX<1>" LOC ="M13"; \
NET "MUX<0>" LOC ="K14"; Q
NET "incr_hourl"™ LOC ="AT7";

NET "“incr_hour" LOC ="M4", QQ

NET "“incr_minl" LOC ="C11"; \
NET “incr_min" LOC ="Gl2

Final Project — Digital Clock 27

TESTING

Waveform Graphs for both clk1Hz and clk200Hz

m input
-LE reset
m output

18 input_period

p—
E——
| ————
Figure 15: Waveform &
The Test Bench code for 200Hz Q
LIBRARY ieee€; Q

USE ieee.std_logic 1164.ALL;

ENTITY clk200Hz_tb IS ‘Q\)

END clk200Hz_tb;

ARCHITECTURE behavior OF clk200Hz tb@

-- Component Declaration for the L{K@Test (UuT)
COMPONENT clk200Hz \QQ
PORT(Q

input : IN std Iog!c
reset: IN std_ Io
output OU

ENDQ M&ﬂ T,
blnput std_logic :=
S|gnal reset : std_logic := O,

--Outputs
signal output : std_logic;
-- No clocks detected in port list. Replace <clock> below with
-- appropriate port name

28

constant input_period : time := 10 ns;
BEGIN

-- Instantiate the Unit Under Test (UUT)
uut: clk200Hz PORT MAP (
input => input,
reset => reset,
output => output

);

-- Clock process definitions
input_process :process
begin
input <='0"
wait for input_period/2;
input <="1"
wait for input_period/2;

end process; @

-- Stimulus process \
stim_proc: process Q
begin Q\Q
reset <='1"; N Q
wait for 100 ns; \
reset <="0";
wait;

EENG 2910 Project Il : Digital System Design

Final Project — Digital Clock 29

The Test Bench code for 1Hz
LIBRARY ieee;
USE ieee.std_logic 1164.ALL;

ENTITY clklHz_tb IS

END clk1Hz_tb; \\
ARCHITECTURE behavior OF clklHz_tb IS QQ

-- Component Declaration for the Unit Under Test (UUT) &
COMPONENT clk1Hz Q
PORT(Q

input : IN std_logic;

reset : IN std_logic; %
output : OUT std_logic
) N\

END COMPONENT; @

--Inputs
signal input : std_logic :="'0"; \
signal reset : std_logic := OQQQ

--Outputs . Q
signal output : std_lo \

-- No clocks de t list. Replace <clock> below with

-- approprialk%
constarh\@_eriod - time := 10 ns;

B §
-- Instantiate the Unit Under Test (UUT)
uut: clk1Hz PORT MAP (
input => input,
reset => reset,

output => output

);

30

-- Clock process definitions
input_process :process
begin
input <="0"
wait for input_period/2;
input <="1"
wait for input_period/2;
end process;

-- Stimulus process
stim_proc: process
begin

reset <="'1"
wait for 100 ns;
reset <='0";

wait;

end process; :Q

END;

wait; @

EENG 2910 Project Il : Digital System Design

Final Project — Digital Clock 31

SUMMARY AND CONCLUSION

With this project, we actually learned the importance of working as a team. First we decided to
understand the abilities and skills of one another and how could they be applying into the project.
We all knew something better at one topic than one another. With that being said we combined
everything we knew at our best making the project a lot easier to work. Then we learned each

other’s schedule to see when meeting up was more appropriate for everyone on fhe team.
Meeting up together was quite hard as we all had very busy schedules so we decid ork on
it separately, so whenever we would meet up we could exchange ideas and expe Ve also
learned that communication is a key for success, as we were in contact with Q imes by

Final Project — Digital Clock

REFERENCES

Books

FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version by Pong P. Chu

http://www.estadofinito.com/reloj-digital/ &

33

http://www.estadofinito.com/reloj-digital/

