
 

 

  

 

EENG 2910 Project III: Digital System Design 

Due: 04/30/2014 

 

Team Members:  

 

 

University of North Texas 

Department of Electrical Engineering 





Table of Content  i 
 

 

Contents 
Abstract .............................................................................................................................................3 

Introduction ......................................................................................................................................3 

Report ...............................................................................................................................................4 

Oscillators.................................................................................................................................................. 5 

Clk1Hz........................................................................................................................................................ 5 

Counter Clock ............................................................................................................................................ 7 

Clk200Hz ................................................................................................................................................. 12 

Seven Segment Mux ............................................................................................................................... 14 

Seven Segment Display ........................................................................................................................... 16 

Ports and Port Map ................................................................................................................................. 20 

Testing............................................................................................................................................. 27 

Summary and Conclusion ................................................................................................................. 31 

References ....................................................................................................................................... 33 

 





Final Project – Digital Clock  3 
 

 

The Final Project gives us the opportunity to work on Xilinx ISE, basy2board and VHDL to 

work on a brief report for it. The objective of the project was to make a digital clock. The project 

will not be focused on alarm. 

 

The digital system is an interconnection of digital modules designed to perform specific 

functions. VHDL stands for very high-speed integrated circuit (VHSIC) hardware description 

language. It was originally sponsored by the U.S department of Defense and later transferred to 

the IEEE (Institute of Electrical and Electronics Engineers). VHDL is used for describing and 

modeling a digital system at various levels and is a complex language. 

 

VHDL model is a complete VHDL component description consists of an entity and an 

architecture. The entity describes the component’s interface. Architecture defines the 

component’s function and architectural description is the structural, behavioral. In port modes 

there are four default modes in VHDL in, out, inout and buffer. 

 

We worked with the BASYS2 Spartan 3E Kit and Xilinx ISE to perform the objective. The 

Basy2 board is a circuit design and implementation platform that anyone can use to gain 

experience building real digital circuits. The FPGA on the basys2 board are programmed by the 

user before it can perform any functions. The Basys2 board includes several input devices, 

output devices, and data ports, allowing many designs to be implemented without the need for 

any other components. 

 

 

 

 

 

 

 

 



4  EENG 2910 Project III : Digital System Design 

 

This report has been divided to different sections since to make the digital clock we used PORT 

Map to glue up several VHDL files to work together as one. Figure 1 shows the RTL schematic 

diagram of the Digital Clock VHDL file. 

 

 
Figure 1: RTL Schematic Diagram of the Digital Clock VHDL file 

 

The digital_clock block has 6 inputs clock clk, reset, incr_min, incr_min1, incr_hour and 

incr_hour1. It has 2 outputs one is “mux” and the other “output.” Inside the whole block there is 

6 blocks and each of them are four different functions. The clk1Hz block makes the VHDL file 

works according to the time. The counter_clock block is where the relationship between hours, 

minutes and seconds is described. In the seven segment_block_complete block there is 3 more 

blocks. The clk200Hz block makes the display of the segment display refresh after few 

milliseconds. The seven_segment_mux helps to decide whether number should display in AN3 

or AN2 or AN1 or AN0 as shown in Figure 2. The seven_segment block decides what to display 

in 7 segment display output.  

 

 
Figure 2: Mux Decision 



Final Project – Digital Clock  5 
 

 

Oscillators 
The Basys2 board includes silicon oscillator which produces oscillation at 50MHz, which is the 

primary oscillator which is connected to global clock input pins at pin B8. Figure 3 shows the B8 

pin. 

 

 
Figure 3: B8 Pin 

 

 

Clk1Hz 
The basys2board has a silicon oscillator that produces 25 MHz, 50MHz or 100MHz based on the 

position of the clock select jumper at JP4. The primary and secondary pins at pin B8 and pin M6 

respectively. To make the clock with respect to seconds, Frequency divider rule was applied 

 

Formula: 

Scaling Factor=Frequency of the board/ Required Frequency 

As we know, time= 1/frequency. Therefore we need 1Hz. 

Oscillator is 50 MHz and the required is 1Hz  

50M/1=50M cycles 

Only considering the rising edge. Therefore we needed 50M/2= 25M cycles 

1Hz clock: is used as input signal to the counter (we will count every second). 

A clock signal while maintaining the high than in low; for this particular case, 25000000 cycles 

25000000 cycles high and low. Since we started counting at zero, the upper limit is 25000000-1. 

The signal reset is used to reset the counter. The block diagram of the clk1Hz is shown in Figure 

4. 

 
Figure 4: Clk1Hz 



6  EENG 2910 Project III : Digital System Design 

 

The VHDL code for clk1Hz is shown below 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity clk1Hz is 

    Port ( 

        input: in  STD_LOGIC; 

        reset  : in  STD_LOGIC; 

        output : out STD_LOGIC 

    ); 

end clk1Hz; 

 

architecture Behavioral of clk1Hz is 

    signal temporal: STD_LOGIC; 

    signal counter: integer range 0 to 24999999 := 0; 

begin 

   frequency_divider: process (reset, input) begin 

        if (reset = '1') then 

            temporal <= '0'; 

            counter <= 0; 

        elsif rising_edge(input) then 

            if (counter = 24999999) then 

                temporal <= NOT(temporal); 

                counter <= 0; 

            else 

                counter <= counter+1; 

            end if; 

        end if; 

    end process; 

  

    output <= temporal; 

end Behavioral; 

 

 

 

 

 

 

 

 



Final Project – Digital Clock  7 
 

 

Counter Clock 
Figure 5 shows the block diagram of the counter clock. It has 6 inputs clk, incr_hour, incr_hour1, 

incr_min, incr_min1 and reset. It has 4 outputs H0, H1, M0 and M1. 

 
Figure 5: Counter Clock 

 

The input of the counter_clock is the output of the clk1Hz block so that it can use the logic of 1 

second. incr_hour, incr_hour1, incr_min, incr_min1 are the inputs which will be used as a switch 

to increment the value of the each digits. The designated digits are shown in figure 6. 

 

 
Figure 6: Designated Digits 

 

The outputs of the counter_clock are M0, M1, H0 and H1. 

 

 

 

 

 

 

 

 

 

 

Incr_min 

Incr_min1 

Incr_hour 

Incr_hour1 

 



8  EENG 2910 Project III : Digital System Design 

 

 

The VHDL code for Counter_Clock is shown below with box explanation 

The words in italic are not in the code 

 

library IEEE; 

use IEEE.NUMERIC_STD.ALL; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity counter_clock is 

 PORT ( 

  clk  : IN  STD_LOGIC;  

  reset: IN  STD_LOGIC;  

  incr_hour : IN  STD_LOGIC;  

                        incr_min : IN  STD_LOGIC;  

  incr_hour1 : IN  STD_LOGIC;  

                        incr_min1 : IN  STD_LOGIC;  

  H1   : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);  

  H0   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);  

  M1   : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);  

  M0   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)   

 ); 

end counter_clock; 

 

M0 and H0 are 3 downto 0 because in terms of binary it is 4 binary numbers starting from 

“0000.” Therefore 2 to the power 4 is 16. Hence we know M0 and H0 are the number from 0 to 

15. M1 and H1 are 2 downto 0 because in terms of binary it is 3 binary numbers starting from 

“000.” Therefore 2 to the power 3 is 8. Hence we know M1 and H1 are the number from 0 to 7.  

 

architecture Behavioral of counter_clock is 

   signal mm: UNSIGNED(5 downto 0) := "000000" ; 

 signal mm1: UNSIGNED(2 downto 0) := "000" ; 

 signal mm0: UNSIGNED(3 downto 0) := "0000"; 

 signal hh1: UNSIGNED(2 downto 0) := "000" ; 

 signal hh0: UNSIGNED(3 downto 0) := "0000"; 

 

Signal mm, mm0, mm1, hh0, hh1 are produced inside the counter_clock block. This signals uses 

the clock of 1Hz 

 

 

 



Final Project – Digital Clock  9 
 

 

begin 

 clock: process (clk, reset) begin 

  if reset = '1' then 

   hh1 <= "000" ; 

   hh0 <= "0000"; 

   mm1 <= "000" ; 

   mm0 <= "0000"; 

   mm<= "000000"; 

When the reset will be turned on or in other words when it will be 1 it will turn the value of the 

hh1, hh0, mm1, mm0 and mm to 0. 

 

  elsif incr_hour1 = '1' then  

                                hh1 <= hh1 +1; 

                    if hh1 = 2 then 

            hh1 <= "000"; 

         end if; 

            elsif incr_hour = '1' then  

                                hh0 <= hh0 +1; 

                                if hh0 = 9 then 

   hh0<="0000";  

          end if;  

                      elsif incr_min1 = '1' then 

                              mm1 <= mm1 + 1;  

                              if mm1 = 5 then 

                                  mm1 <= "000" ;  

                             end if;      

                    elsif incr_min = '1' then 

                            mm0 <= mm0 + 1; 

                 if mm0 = 9 then 

                                mm0 <= "0000"; 

                end if; 

         elsif hh1 = 2 AND hh0 > 3 then 

     hh1 <= "000";       

 

      

<<With respect to this image, if incr_min is high then it will increment the value of 6 to 7. If 

incr_min1 is high it will increment the value of 5 to 6. If incr_hour is high, it will increment the 

value of 2 to 3. If the incr_hour1 is high, it will increment the value of 1 to 2. Incr_min will 

increment the 0 to 9 then it again starts from 0. Incr_min1 will increment from 0 to 5 then it 

again starts from 0. Incr_hour will increment from 0 to 9 then it again starts from 0. Incr_hour1 



10  EENG 2910 Project III : Digital System Design 

 

will increment from 0 to 2 then it will again start from 0. If the value of incr_hour is more than 3 

and the value of incr_hour1 is 2 then it will turn both the incr_hour as well as incr_hour1 to 0. 

 

 

                            elsif rising_edge(clk) then 

   mm<= mm+1; 

   if mm = 59 then 

   mm0 <= mm0 + 1; 

   mm<="000000"; 

   end if; 

   if mm0 = 9 then 

    mm1 <= mm1 + 1; 

    mm0 <= "0000"; 

   end if; 

   

   if mm1 = 5 AND mm0 = 9 then 

    hh0 <= hh0 + 1; 

    mm1 <= "000"; 

   end if; 

   if hh0 = 9 then 

    hh1 <= hh1 + 1; 

    hh0 <= "0000"; 

   end if; 

   

   if hh1 = 2 AND hh0 = 3 AND mm1 = 5 AND mm0 = 9 then 

    hh1 <= "000"; 

    hh0 <= "0000"; 

   end if; 

  end if; 

 end process; 

  

When the clock has the rising edge it will make mm signal increment by 1. Therefore, the mm 

signal acts like seconds. When the mm signal reaches 59 seconds, the mm signal becomes 0 and 

it increments the value of mm0 by 1. When the mm0 reaches 9 it increments the mm1 by 1 and 

mm0 itself becomes zero. When the mm1 reaches 5 and mm0 reaches 9 it increments the values 

of hh0 by 1 and both mm1 and mm0 becomes 0. When hh0 becomes 9 it increments the value of 

hh1 by 1. When hh1 becomes 2, hh0 becomes 3 , mm1 becomes 5 and mm0 becomes 9, all the 

value resets. 

 

 



Final Project – Digital Clock  11 
 

 

 

 H1 <= STD_LOGIC_VECTOR(hh1); 

 H0 <= STD_LOGIC_VECTOR(hh0); 

 M1 <= STD_LOGIC_VECTOR(mm1); 

 M0 <= STD_LOGIC_VECTOR(mm0); 

end Behavioral; 

 

The signal mm0,mm1,hh0 and hh1 are assigned to the variables M0,M1,H0,H1. 

So in brief, Counter clock is the component which is responsible for counting from 0 to 23 for the 

hours and 0 to 59 for minutes.The reset is responsible for returning the counter to zero  

The counter mm0 account 0-9, incremented by one each time it receives the clock signal. 

The counter mm1 counts from 0 to 5, increases by one each time mm0 is nine. 

The counter hh0 account 0-9, incremented by one each time mm1 is 5 and mm0 is 9 (hourly). 

The counter hh0 account 0-2, incremented by one each time hh0 is nine. 

Counters hour hh0 and hh1 , return to zero when the time is 23:59. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12  EENG 2910 Project III : Digital System Design 

 

Clk200Hz 
For each of the four digits to appear bright and continuously illuminated at 7 segment display of 

basys2 board, all four digits should be driven once every 1 to 16ms.  For example, in a 60Hz 

refresh scheme, the entire display would be refreshed once every 16ms, and each digit would be 

illuminated for ¼ of the refresh cycle, or 4ms. To illuminate all AN1, AN2, AN3 and AN4 we 

took 200Hz to make digits illuminate constantly. This circuit drives the anode signals and 

corresponding cathode patterns of each digit in a repeating, continuous succession, at an update 

rate that is faster than the human eye response. 

 
Figure 8: To illuminate all AN1, AN2, AN3 and AN4 

 

Calculations: 

The calculation process is similar to Clk1Hz using frequency divider rule. 

Oscillator is 50 MHz and we need output of 200Hz   

50M/200 = 250,000 cycles 

Since we are considering only the rising edge  

We would be needing 250,000/2= 125,000 cycles 

 

Figure 9 shows the block diagram of the Clk200Hz 

 
Figure 9: Clk200Hz 

 

 



Final Project – Digital Clock  13 
 

 

The VHDL code for clk200Hz is shown below 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

  

entity clk200Hz is 

    Port ( 

        input: in  STD_LOGIC; 

        reset  : in  STD_LOGIC; 

        output : out STD_LOGIC 

    ); 

end clk200Hz; 

  

architecture Behavioral of clk200Hz is 

    signal temporal: STD_LOGIC; 

    signal counter: integer range 0 to 124999 := 0; 

begin 

    frequency_divider: process (reset, input) begin 

        if (reset = '1') then 

            temporal <= '0'; 

            counter <= 0; 

        elsif rising_edge(input) then 

            if (counter = 124999) then 

                temporal <= NOT(temporal); 

                counter <= 0; 

            else 

                counter <= counter+1; 

            end if; 

        end if; 

    end process; 

  

    output <= temporal; 

end Behavioral; 

 

 

 

 

 

 



14  EENG 2910 Project III : Digital System Design 

 

Seven Segment Mux 
Figure 10 shows the seven segment mux. 

 
Figure 10: Seven Segment Mux 

 

In this block, Multiplexor concept is used. A multiplexer or data selector is a logic circuit that 

accepts multiple inputs and only allows one to reach the exit. 

 

The VHDL code for the Multiplexor is shown below with explanation 

The writings in Italic are not in the code 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity seven_segment_mux is 

    PORT ( 

        clk   : IN  STD_LOGIC; 

        reset : IN  STD_LOGIC; 

        D0    : IN  STD_LOGIC_VECTOR(5 downto 0);   

        D1    : IN  STD_LOGIC_VECTOR(5 downto 0);   

        D2    : IN  STD_LOGIC_VECTOR(5 downto 0);   

        D3    : IN  STD_LOGIC_VECTOR(5 downto 0);   

        output: OUT STD_LOGIC_VECTOR(5 downto 0);   

        MUX   : OUT STD_LOGIC_VECTOR(3 downto 0)    

    ); 

end seven_segment_mux; 

 



Final Project – Digital Clock  15 
 

 

D0 input uses the output of H1, D1 input uses the output of H0, D2 uses the output of M1 and D3 

uses the output of M0. Its clk input uses the output of clk200Hz. 

 

architecture Behavioral of seven_segment_mux is 

    type states is (rst, v0, v1, v2, v3); 

    signal state : states; 

begin 

    displays: process (reset, clk) begin 

        if (reset = '1') then 

            state <= rst; 

            MUX <= x"F"; 

            output <= "111111"; 

        elsif rising_edge(clk) then 

            case state is 

                when v0 => 

                    output <= D3; 

                    MUX <= "1110"; 

                    state <= v1; 

                when v1 => 

                    output <= D2; 

                    MUX <= "1101"; 

                    state <= v2; 

                when v2 => 

                    output <= D1; 

                    MUX <= "1011"; 

                    state <= v3; 

                when others => 

                    output <= D0; 

                    MUX <= "0111"; 

                    state <= v0; 

            end case; 

        end if; 

    end process; 

end Behavioral; 

 

When the MUX <= "1110" it turns the AN0 on and the value D3 is assigned to MUX <= "1110" 

When the MUX <= "1101" it turns the AN1 on and the value D2 is assigned to MUX <= "1101" 

When the MUX <= "1011" it turns the AN2 on and the value D1 is assigned to MUX <= "1011" 

When the MUX <= "0111" it turns the AN3 on and the value D0 is assigned to MUX <= "0111" 

With respect to Figure 2. 



16  EENG 2910 Project III : Digital System Design 

 

Seven Segment Display 
Figure 11 shows the block diagram of the seven segment. 

 
Figure 11: Seven Segment Display 

 

The ideas behind the seven segment display are shown in Figure 12 

 
Figure 12: Seven Segment Logic 

 

 



Final Project – Digital Clock  17 
 

 

The VHDL code for the Seven Segment is shown below with explanation 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

 

entity seven_segment is 

    PORT ( 

        input: IN  STD_LOGIC_VECTOR(5 downto 0); 

        output : OUT STD_LOGIC_VECTOR(7 downto 0) 

    ); 

end seven_segment; 

 

architecture Behavioral of seven_segment is 

begin 

    display: process (input) begin 

        case input is 

            when "000000" =>  output <= x"C0"; -- 0 

            when "000001" =>  output <= x"F9"; -- 1 

            when "000010" =>  output <= x"A4"; -- 2 

            when "000011" =>  output <= x"B0"; -- 3 

            when "000100" =>  output <= x"99"; -- 4 

            when "000101" =>  output <= x"92"; -- 5 

            when "000110" =>  output <= x"82"; -- 6 

            when "000111" =>  output <= x"F8"; -- 7 

            when "001000" =>  output <= x"80"; -- 8 

            when "001001" =>  output <= x"98"; -- 9 

            when "001010" =>  output <= x"88"; -- A 

            when "001011" =>  output <= x"83"; -- B 

            when "001100" =>  output <= x"C6"; -- C 

            when "001101" =>  output <= x"A1"; -- D 

            when "001110" =>  output <= x"86"; -- E 

            when "001111" =>  output <= x"8E"; -- F 

            when "010000" =>  output <= x"90"; -- G 

            when "010001" =>  output <= x"89"; -- H 

            when "010010" =>  output <= x"E6"; -- I 

            when "010011" =>  output <= x"E1"; -- J 

            when "010100" =>  output <= x"85"; -- K 

            when "010101" =>  output <= x"C7"; -- L 

            when "010110" =>  output <= x"C8"; -- M 

            when "010111" =>  output <= x"AB"; -- N 



18  EENG 2910 Project III : Digital System Design 

 

            when "011000" =>  output <= x"C0"; -- O 

            when "011001" =>  output <= x"8C"; -- P 

            when "011010" =>  output <= x"98"; -- Q 

            when "011011" =>  output <= x"AF"; -- R 

            when "011100" =>  output <= x"92"; -- S 

            when "011101" =>  output <= x"87"; -- T 

            when "011110" =>  output <= x"E3"; -- U 

            when "011111" =>  output <= x"C1"; -- V 

            when "100000" =>  output <= x"E2"; -- W 

            when "100001" =>  output <= x"8F"; -- X 

            when "100010" =>  output <= x"91"; -- Y 

            when "100011" =>  output <= x"B6"; -- Z 

            when "100100" =>  output <= x"BF"; -- - 

            when "100101" =>  output <= x"F7"; -- _ 

            when "100110" =>  output <= x"7F"; -- . 

            when others   =>  output <= x"FF"; -- None 

        end case; 

    end process; 

end Behavioral; 

 

Explanation: A seven-segment display consists of seven light-emitting diodes (LEDs) arranged 

in a pattern as shown in Figure 13, and some include an eighth LED for the decimal point. Two 

types of displays according to their electrical connections: common anode and common cathode .  

In common anode, a 0 is used for power and 1 for OFF (negative logic). 

Otherwise, one uses a common cathode LEDs to turn on and zero to turn off (positive logic). 

 

 

 
Figure 13: LEDs Arrangement 

 

 

 



Final Project – Digital Clock  19 
 

 

Having 7 LEDs can generate a total of 128 combinations, although not all of them make up 

characters. The symbol table and the following characters are encoded is 10 digits (0 through 9), 

26 letters (A through Z), and characters _ , - , and . . these 37 symbols to represent 6 bits are 

needed (five to 32 bits can represent values only). This process of assigning a number to each 

character is called encoding. Finally, to display the digit on a seven-segment display is necessary 

to decode the numerical value according to the pattern indicated LEDs. This decoding is 

performed assuming that the display is common anode (active zero, one off). 

In brief, initially has a character which is assigned a numerical value (coding) to deal with the 

digitally subsequently transforms the pattern corresponding LEDs (decoding). 

 

 
Figure 14: Hardware Description 

 

When "000000" => output <= x "C0"; - 0 

 

So it assigns the hexadecimal value "C0" to exit. That translates to the following binary value: 

"11000000", implying that the segments corresponding to the decimal point and led g are high 

and the other low. For common anode connection which is handled at the Basys2 card, the 

LEDs dp and g are off and the other led are on. 

 

For example: 

 

 For “0” number, the binary number is “000000” which is 11000000 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

1 1 0 0 0 0 0 0 

dp g f e d c b a 

 

Binary to Hexadecimal conversion 

 1100   0000 

 C          O 

Therefore “CO” 

 

 



20  EENG 2910 Project III : Digital System Design 

 

Ports and Port Map 
Basically, the steps for the declaration of a component relative to the VHDL module are: 

 It replaces the keyword ENTITY by keyword COMPONENT. 

 Component ports identically as they appear in the module are listed. 

 It ends with the statement END COMPONENT 

 

PORT MAP: is responsible for instantiating a component and determine its connection with 

other components 

 

Tag: Chain CLK_I becomes the name of the component instance. This is necessary because each 

instance must have a name to be able to differentiate from each other. The label must be a unique 

name to avoid conflicts existential synthesis tools  

 

Component being instantiated: It Specifies the name of the component being instantiated (in this 

case our frequency divider). To this point, there must be a component declaration somewhere in 

the main module. 

 

Keyword PORT MAP: It is indicating that the component will instantiate and assign the input 

and output signals to the instance. 

 

Port List: Here the signals that are required as input instance and the signals are assigned to 

receive the output value is sent.  

 

 

VHDL Code for Seven Segment Complete 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity seven_segment_complete is 

    PORT ( 

        clk   : IN  STD_LOGIC; 

        reset : IN  STD_LOGIC; 

        D0    : IN  STD_LOGIC_VECTOR(5 downto 0); 

        D1    : IN  STD_LOGIC_VECTOR(5 downto 0); 

        D2    : IN  STD_LOGIC_VECTOR(5 downto 0); 

        D3    : IN  STD_LOGIC_VECTOR(5 downto 0); 

        output: OUT STD_LOGIC_VECTOR(7 downto 0); 

        MUX   : OUT STD_LOGIC_VECTOR(3 downto 0) 

    ); 



Final Project – Digital Clock  21 
 

 

end seven_segment_complete; 

 

architecture Behavioral of seven_segment_complete is 

 COMPONENT clk200Hz IS 

  PORT ( 

            input: IN  STD_LOGIC; 

            reset  : IN  STD_LOGIC; 

            output : OUT STD_LOGIC 

        ); 

    END COMPONENT; 

     

    COMPONENT seven_segment IS 

  PORT ( 

            input: IN  STD_LOGIC_VECTOR(5 downto 0); 

            output : OUT STD_LOGIC_VECTOR(7 downto 0) 

        ); 

    END COMPONENT; 

     

    COMPONENT seven_segment_mux IS 

        PORT ( 

            clk   : IN  STD_LOGIC; 

            reset : IN  STD_LOGIC; 

            D0    : IN  STD_LOGIC_VECTOR(5 downto 0); 

            D1    : IN  STD_LOGIC_VECTOR(5 downto 0); 

            D2    : IN  STD_LOGIC_VECTOR(5 downto 0); 

            D3    : IN  STD_LOGIC_VECTOR(5 downto 0); 

            output: OUT STD_LOGIC_VECTOR(5 downto 0); 

            MUX   : OUT STD_LOGIC_VECTOR(3 downto 0) 

        ); 

    END COMPONENT; 

     

    signal clk_out : STD_LOGIC := '0'; 

    signal digit  : STD_LOGIC_VECTOR(5 downto 0); 

begin 

    clk_i: clk200Hz PORT MAP( 

        clk, reset, clk_out 

    ); 

     

    mux_i: seven_segment_mux PORT MAP( 

        clk_out, reset, D0, D1, D2, d3, digit, MUX 



22  EENG 2910 Project III : Digital System Design 

 

    ); 

     

    seg_i: seven_segment PORT MAP( 

        digit, output 

    ); 

end Behavioral; 

 

 

VHDL Code for Digital Clock 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity digital_clock is 

 PORT( 

  clk   : IN  STD_LOGIC; 

  reset : IN  STD_LOGIC; 

  incr_hour : IN  STD_LOGIC;  

      incr_min : IN  STD_LOGIC;  

  incr_hour1 : IN  STD_LOGIC;  

      incr_min1 : IN  STD_LOGIC;  

  output: OUT STD_LOGIC_VECTOR(7 downto 0); 

  MUX   : OUT STD_LOGIC_VECTOR(3 downto 0) 

 ); 

end digital_clock; 

 

architecture Behavioral of digital_clock is 

 COMPONENT clk1Hz IS 

  PORT ( 

            input: IN  STD_LOGIC; 

            reset  : IN  STD_LOGIC; 

            output : OUT STD_LOGIC 

        ); 

    END COMPONENT; 

  

 COMPONENT counter_clock IS 

  PORT ( 

   clk  : IN  STD_LOGIC; 

   reset: IN  STD_LOGIC; 

   incr_hour : IN  STD_LOGIC;  

         incr_min : IN  STD_LOGIC;  



Final Project – Digital Clock  23 
 

 

   incr_hour1 : IN  STD_LOGIC;  

         incr_min1 : IN  STD_LOGIC;  

   H1   : OUT STD_LOGIC_VECTOR(2 DOWNTO 0); 

   H0   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); 

   M1   : OUT STD_LOGIC_VECTOR(2 DOWNTO 0); 

   M0   : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) 

  ); 

 END COMPONENT; 

  

 COMPONENT seven_segment_complete IS 

  PORT ( 

   clk   : IN  STD_LOGIC; 

   reset : IN  STD_LOGIC; 

   D0    : IN  STD_LOGIC_VECTOR(5 downto 0); 

   D1    : IN  STD_LOGIC_VECTOR(5 downto 0); 

   D2    : IN  STD_LOGIC_VECTOR(5 downto 0); 

   D3    : IN  STD_LOGIC_VECTOR(5 downto 0); 

   output: OUT STD_LOGIC_VECTOR(7 downto 0); 

   MUX   : OUT STD_LOGIC_VECTOR(3 downto 0) 

  ); 

 END COMPONENT; 

  

 signal clk_out : STD_LOGIC := '0'; 

 signal HH1, MM1: STD_LOGIC_VECTOR(2 downto 0); 

 signal HH0, MM0: STD_LOGIC_VECTOR(3 downto 0); 

 signal pHH1, pHH0, pMM1, pMM0: STD_LOGIC_VECTOR(5 downto 0); 

begin 

  

 clk_i: clk1Hz PORT MAP(clk, reset, clk_out); 

 cnt_i: counter_clock PORT MAP(clk_out, 

reset,incr_hour,incr_min,incr_hour1,incr_min1,HH1, HH0, MM1, MM0); 

 seg_i: seven_segment_complete PORT MAP(clk, reset, pMM0, pMM1, pHH0, pHH1, 

output, MUX); 

  

 pHH1 <= "000" & HH1; 

 pHH0 <= "00"  & HH0; 

 pMM1 <= "000" & MM1; 

 pMM0 <= "00"  & MM0; 

end Behavioral; 

 



24  EENG 2910 Project III : Digital System Design 

 

Test bench 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.numeric_std.ALL; 

  

ENTITY timingminutestb IS 

END timingminutestb; 

  

ARCHITECTURE behavior OF timingminutestb IS  

  

 

    COMPONENT digital_clock 

    PORT( 

         clk : IN  std_logic; 

         reset : IN  std_logic; 

         incr_hour : IN  std_logic; 

         incr_min : IN  std_logic; 

         incr_hour1 : IN  std_logic; 

         incr_min1 : IN  std_logic; 

         output : OUT  std_logic_vector(7 downto 0); 

         MUX : OUT  std_logic_vector(3 downto 0) 

        ); 

    END COMPONENT; 

     

 

   --Inputs 

   signal clk : std_logic := '0'; 

   signal reset : std_logic := '0'; 

   signal incr_hour : std_logic := '0'; 

   signal incr_min : std_logic := '0'; 

   signal incr_hour1 : std_logic := '0'; 

   signal incr_min1 : std_logic := '0'; 

 

  --Outputs 

   signal output : std_logic_vector(7 downto 0); 

   signal MUX : std_logic_vector(3 downto 0); 

 

   -- Clock period definitions 

   constant clk_period : time := 10 ns; 

  



Final Project – Digital Clock  25 
 

 

BEGIN 

  

 -- Instantiate the Unit Under Test (UUT) 

   uut: digital_clock PORT MAP ( 

          clk => clk, 

          reset => reset, 

          incr_hour => incr_hour, 

          incr_min => incr_min, 

          incr_hour1 => incr_hour1, 

          incr_min1 => incr_min1, 

          output => output, 

          MUX => MUX 

        ); 

 

   -- Clock process definitions 

   clk_process :process 

   begin 

  clk <= '0'; 

  wait for clk_period/2; 

  clk <= '1'; 

  wait for clk_period/2; 

   end process; 

  

 

   -- Stimulus process 

   stim_proc: process 

   begin   

      -- hold reset state for 100 ns. 

      wait for 100 ns;  

 

      wait for clk_period*10; 

 

      -- insert stimulus here  

 

      wait; 

   end process; 

 

END; 

 

 



26  EENG 2910 Project III : Digital System Design 

 

UCF File 

NET  "clk"         LOC = "B8"; 

NET  "reset"       LOC = "N3"; 

 

NET  "output<7>"   LOC = "N13"; # dp 

NET  "output<6>"   LOC = "M12"; # g 

NET  "output<5>"   LOC = "L13"; # f 

NET  "output<4>"   LOC = "P12"; # e 

NET  "output<3>"   LOC = "N11"; # d 

NET  "output<2>"   LOC = "N14"; # c 

NET  "output<1>"   LOC = "H12"; # b 

NET  "output<0>"   LOC = "L14"; # a 

 

 

NET  "MUX<3>"      LOC = "F12"; 

NET  "MUX<2>"      LOC = "J12"; 

NET  "MUX<1>"      LOC = "M13"; 

NET  "MUX<0>"      LOC = "K14"; 

 

 

NET  "incr_hour1"   LOC = "A7"; 

NET  "incr_hour"   LOC = "M4"; 

NET  "incr_min1"    LOC = "C11"; 

NET  "incr_min"    LOC = "G12"; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Final Project – Digital Clock  27 
 

 

 

Waveform Graphs for both clk1Hz and clk200Hz

 

Figure 15: Waveform 

 

The Test Bench code for 200Hz 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

  

ENTITY clk200Hz_tb IS 

END clk200Hz_tb; 

  

ARCHITECTURE behavior OF clk200Hz_tb IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT clk200Hz 

    PORT( 

         input : IN  std_logic; 

         reset : IN  std_logic; 

         output : OUT  std_logic 

        ); 

    END COMPONENT; 

     

 

   --Inputs 

   signal input : std_logic := '0'; 

   signal reset : std_logic := '0'; 

 

  --Outputs 

   signal output : std_logic; 

   -- No clocks detected in port list. Replace <clock> below with  

   -- appropriate port name  



28  EENG 2910 Project III : Digital System Design 

 

  

   constant input_period : time := 10 ns; 

  

BEGIN 

  

 -- Instantiate the Unit Under Test (UUT) 

   uut: clk200Hz PORT MAP ( 

          input => input, 

          reset => reset, 

          output => output 

        ); 

 

   -- Clock process definitions 

   input_process :process 

   begin 

  input <= '0'; 

  wait for input_period/2; 

  input <= '1'; 

  wait for input_period/2; 

   end process; 

  

 

   -- Stimulus process 

   stim_proc: process 

   begin   

       

     reset <= '1';  

        wait  for  100 ns; 

        reset <= '0';  

        wait; 

 

      wait; 

   end process; 

 

END; 

 

 

 

 



Final Project – Digital Clock  29 
 

 

 

The Test Bench code for 1Hz 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

  

ENTITY clk1Hz_tb IS 

END clk1Hz_tb; 

  

ARCHITECTURE behavior OF clk1Hz_tb IS  

  

    -- Component Declaration for the Unit Under Test (UUT) 

  

    COMPONENT clk1Hz 

    PORT( 

         input : IN  std_logic; 

         reset : IN  std_logic; 

         output : OUT  std_logic 

        ); 

    END COMPONENT; 

     

 

   --Inputs 

   signal input : std_logic := '0'; 

   signal reset : std_logic := '0'; 

 

  --Outputs 

   signal output : std_logic; 

   -- No clocks detected in port list. Replace <clock> below with  

   -- appropriate port name  

  

   constant input_period : time := 10 ns; 

  

BEGIN 

  

 -- Instantiate the Unit Under Test (UUT) 

   uut: clk1Hz PORT MAP ( 

          input => input, 

          reset => reset, 

          output => output 

        ); 



30  EENG 2910 Project III : Digital System Design 

 

 

   -- Clock process definitions 

   input_process :process 

   begin 

  input <= '0'; 

  wait for input_period/2; 

  input <= '1'; 

  wait for input_period/2; 

   end process; 

  

 

   -- Stimulus process 

   stim_proc: process 

   begin   

       

     reset <= '1';  

        wait  for  100 ns; 

        reset <= '0';  

        wait; 

 

      wait; 

   end process; 

 

END; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Final Project – Digital Clock  31 
 

 

With this project, we actually learned the importance of working as a team. First we decided to 

understand the abilities and skills of one another and how could they be applying into the project. 

We all knew something better at one topic than one another. With that being said we combined 

everything we knew at our best making the project a lot easier to work. Then we learned each 

other’s schedule to see when meeting up was more appropriate for everyone on the team. 

Meeting up together was quite hard as we all had very busy schedules so we decided to work on 

it separately, so whenever we would meet up we could exchange ideas and experiences. We also 

learned that communication is a key for success, as we were in contact with other at all times by 

using web programs such as email and Google drive so we could share information and ideas  

 





Final Project – Digital Clock  33 
 

 

 

Books 

FPGA Prototyping by VHDL Examples: Xilinx Spartan-3 Version by Pong P. Chu 

 

Websites 

http://www.estadofinito.com/reloj-digital/ 

http://www.estadofinito.com/reloj-digital/

